3.1.82 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \arcsin (c x))}{x^3} \, dx\) [82]

3.1.82.1 Optimal result
3.1.82.2 Mathematica [A] (verified)
3.1.82.3 Rubi [A] (verified)
3.1.82.4 Maple [A] (verified)
3.1.82.5 Fricas [F]
3.1.82.6 Sympy [F]
3.1.82.7 Maxima [F]
3.1.82.8 Giac [F(-2)]
3.1.82.9 Mupad [F(-1)]

3.1.82.1 Optimal result

Integrand size = 27, antiderivative size = 297 \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {1-c^2 x^2}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \text {arctanh}\left (e^{i \arcsin (c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )}{2 \sqrt {1-c^2 x^2}}+\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )}{2 \sqrt {1-c^2 x^2}} \]

output
-1/2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x^2-3/2*c^2*d*(a+b*arcsin(c*x) 
)*(-c^2*d*x^2+d)^(1/2)-1/2*b*c*d*(-c^2*d*x^2+d)^(1/2)/x/(-c^2*x^2+1)^(1/2) 
+b*c^3*d*x*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+3*c^2*d*(a+b*arcsin(c*x 
))*arctanh(I*c*x+(-c^2*x^2+1)^(1/2))*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/ 
2)-3/2*I*b*c^2*d*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))*(-c^2*d*x^2+d)^(1/2) 
/(-c^2*x^2+1)^(1/2)+3/2*I*b*c^2*d*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))*(-c^ 
2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)
 
3.1.82.2 Mathematica [A] (verified)

Time = 1.58 (sec) , antiderivative size = 389, normalized size of antiderivative = 1.31 \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=-\frac {a d \left (1+2 c^2 x^2\right ) \sqrt {d-c^2 d x^2}}{2 x^2}-\frac {3}{2} a c^2 d^{3/2} \log (x)+\frac {3}{2} a c^2 d^{3/2} \log \left (d+\sqrt {d} \sqrt {d-c^2 d x^2}\right )+\frac {b c^2 d \sqrt {d-c^2 d x^2} \left (c x-\sqrt {1-c^2 x^2} \arcsin (c x)-\arcsin (c x) \log \left (1-e^{i \arcsin (c x)}\right )+\arcsin (c x) \log \left (1+e^{i \arcsin (c x)}\right )-i \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )+i \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )\right )}{\sqrt {1-c^2 x^2}}+\frac {b c^2 d^2 \sqrt {1-c^2 x^2} \left (-2 \cot \left (\frac {1}{2} \arcsin (c x)\right )-\arcsin (c x) \csc ^2\left (\frac {1}{2} \arcsin (c x)\right )-4 \arcsin (c x) \log \left (1-e^{i \arcsin (c x)}\right )+4 \arcsin (c x) \log \left (1+e^{i \arcsin (c x)}\right )-4 i \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )+4 i \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )+\arcsin (c x) \sec ^2\left (\frac {1}{2} \arcsin (c x)\right )-2 \tan \left (\frac {1}{2} \arcsin (c x)\right )\right )}{8 \sqrt {d-c^2 d x^2}} \]

input
Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/x^3,x]
 
output
-1/2*(a*d*(1 + 2*c^2*x^2)*Sqrt[d - c^2*d*x^2])/x^2 - (3*a*c^2*d^(3/2)*Log[ 
x])/2 + (3*a*c^2*d^(3/2)*Log[d + Sqrt[d]*Sqrt[d - c^2*d*x^2]])/2 + (b*c^2* 
d*Sqrt[d - c^2*d*x^2]*(c*x - Sqrt[1 - c^2*x^2]*ArcSin[c*x] - ArcSin[c*x]*L 
og[1 - E^(I*ArcSin[c*x])] + ArcSin[c*x]*Log[1 + E^(I*ArcSin[c*x])] - I*Pol 
yLog[2, -E^(I*ArcSin[c*x])] + I*PolyLog[2, E^(I*ArcSin[c*x])]))/Sqrt[1 - c 
^2*x^2] + (b*c^2*d^2*Sqrt[1 - c^2*x^2]*(-2*Cot[ArcSin[c*x]/2] - ArcSin[c*x 
]*Csc[ArcSin[c*x]/2]^2 - 4*ArcSin[c*x]*Log[1 - E^(I*ArcSin[c*x])] + 4*ArcS 
in[c*x]*Log[1 + E^(I*ArcSin[c*x])] - (4*I)*PolyLog[2, -E^(I*ArcSin[c*x])] 
+ (4*I)*PolyLog[2, E^(I*ArcSin[c*x])] + ArcSin[c*x]*Sec[ArcSin[c*x]/2]^2 - 
 2*Tan[ArcSin[c*x]/2]))/(8*Sqrt[d - c^2*d*x^2])
 
3.1.82.3 Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.79, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {5200, 244, 2009, 5198, 24, 5218, 3042, 4671, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx\)

\(\Big \downarrow \) 5200

\(\displaystyle -\frac {3}{2} c^2 d \int \frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{x}dx+\frac {b c d \sqrt {d-c^2 d x^2} \int \frac {1-c^2 x^2}{x^2}dx}{2 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}\)

\(\Big \downarrow \) 244

\(\displaystyle -\frac {3}{2} c^2 d \int \frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{x}dx+\frac {b c d \sqrt {d-c^2 d x^2} \int \left (\frac {1}{x^2}-c^2\right )dx}{2 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {3}{2} c^2 d \int \frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{x}dx-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5198

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \arcsin (c x)}{x \sqrt {1-c^2 x^2}}dx}{\sqrt {1-c^2 x^2}}-\frac {b c \sqrt {d-c^2 d x^2} \int 1dx}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \arcsin (c x)}{x \sqrt {1-c^2 x^2}}dx}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5218

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \arcsin (c x)}{c x}d\arcsin (c x)}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \int (a+b \arcsin (c x)) \csc (\arcsin (c x))d\arcsin (c x)}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 4671

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \left (-b \int \log \left (1-e^{i \arcsin (c x)}\right )d\arcsin (c x)+b \int \log \left (1+e^{i \arcsin (c x)}\right )d\arcsin (c x)-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \left (i b \int e^{-i \arcsin (c x)} \log \left (1-e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-i b \int e^{-i \arcsin (c x)} \log \left (1+e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle -\frac {3}{2} c^2 d \left (\frac {\sqrt {d-c^2 d x^2} \left (-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))+i b \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )\right )}{\sqrt {1-c^2 x^2}}+\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {1-c^2 x^2}}\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{2 x^2}+\frac {b c d \left (c^2 (-x)-\frac {1}{x}\right ) \sqrt {d-c^2 d x^2}}{2 \sqrt {1-c^2 x^2}}\)

input
Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/x^3,x]
 
output
(b*c*d*(-x^(-1) - c^2*x)*Sqrt[d - c^2*d*x^2])/(2*Sqrt[1 - c^2*x^2]) - ((d 
- c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/(2*x^2) - (3*c^2*d*(-((b*c*x*Sqrt[ 
d - c^2*d*x^2])/Sqrt[1 - c^2*x^2]) + Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x 
]) + (Sqrt[d - c^2*d*x^2]*(-2*(a + b*ArcSin[c*x])*ArcTanh[E^(I*ArcSin[c*x] 
)] + I*b*PolyLog[2, -E^(I*ArcSin[c*x])] - I*b*PolyLog[2, E^(I*ArcSin[c*x]) 
]))/Sqrt[1 - c^2*x^2]))/2
 

3.1.82.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4671
Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[- 
2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*x))]/f), x] + (-Simp[d*(m/f)   Int[(c + 
d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Simp[d*(m/f)   Int[(c + d*x 
)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IG 
tQ[m, 0]
 

rule 5198
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
(e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcS 
in[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt[1 
 - c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x 
] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]]   Int[ 
(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, 
 f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 5200
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcS 
in[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1)))   Int[(f*x)^(m + 
 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 
 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2*x^2) 
^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f} 
, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
 

rule 5218
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)* 
(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e* 
x^2]]   Subst[Int[(a + b*x)^n*Sin[x]^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a 
, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]
 
3.1.82.4 Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 437, normalized size of antiderivative = 1.47

method result size
default \(a \left (-\frac {\left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{2 d \,x^{2}}-\frac {3 c^{2} \left (\frac {\left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3}+d \left (\sqrt {-c^{2} d \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right )\right )\right )}{2}\right )+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) \left (\arcsin \left (c x \right )+i\right ) c^{2} d}{2 \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right ) c^{2} d}{2 \left (c^{2} x^{2}-1\right )}-\frac {d \left (c^{2} x^{2} \arcsin \left (c x \right )-c x \sqrt {-c^{2} x^{2}+1}-\arcsin \left (c x \right )\right ) \sqrt {-d \left (c^{2} x^{2}-1\right )}}{2 x^{2} \left (c^{2} x^{2}-1\right )}+\frac {3 i \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \left (i \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )-i \arcsin \left (c x \right ) \ln \left (1-i c x -\sqrt {-c^{2} x^{2}+1}\right )-\operatorname {polylog}\left (2, i c x +\sqrt {-c^{2} x^{2}+1}\right )+\operatorname {polylog}\left (2, -i c x -\sqrt {-c^{2} x^{2}+1}\right )\right ) c^{2} d}{2 c^{2} x^{2}-2}\right )\) \(437\)
parts \(a \left (-\frac {\left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{2 d \,x^{2}}-\frac {3 c^{2} \left (\frac {\left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3}+d \left (\sqrt {-c^{2} d \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right )\right )\right )}{2}\right )+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) \left (\arcsin \left (c x \right )+i\right ) c^{2} d}{2 \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right ) c^{2} d}{2 \left (c^{2} x^{2}-1\right )}-\frac {d \left (c^{2} x^{2} \arcsin \left (c x \right )-c x \sqrt {-c^{2} x^{2}+1}-\arcsin \left (c x \right )\right ) \sqrt {-d \left (c^{2} x^{2}-1\right )}}{2 x^{2} \left (c^{2} x^{2}-1\right )}+\frac {3 i \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \left (i \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )-i \arcsin \left (c x \right ) \ln \left (1-i c x -\sqrt {-c^{2} x^{2}+1}\right )-\operatorname {polylog}\left (2, i c x +\sqrt {-c^{2} x^{2}+1}\right )+\operatorname {polylog}\left (2, -i c x -\sqrt {-c^{2} x^{2}+1}\right )\right ) c^{2} d}{2 c^{2} x^{2}-2}\right )\) \(437\)

input
int((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x^3,x,method=_RETURNVERBOSE)
 
output
a*(-1/2/d/x^2*(-c^2*d*x^2+d)^(5/2)-3/2*c^2*(1/3*(-c^2*d*x^2+d)^(3/2)+d*((- 
c^2*d*x^2+d)^(1/2)-d^(1/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x^2+d)^(1/2))/x))))+b 
*(-1/2*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(arcsin 
(c*x)+I)*c^2*d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2 
)*x*c+c^2*x^2-1)*(arcsin(c*x)-I)*c^2*d/(c^2*x^2-1)-1/2*d*(c^2*x^2*arcsin(c 
*x)-c*x*(-c^2*x^2+1)^(1/2)-arcsin(c*x))*(-d*(c^2*x^2-1))^(1/2)/x^2/(c^2*x^ 
2-1)+3*I*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)*(I*arcsin(c*x)*ln(1+I*c 
*x+(-c^2*x^2+1)^(1/2))-I*arcsin(c*x)*ln(1-I*c*x-(-c^2*x^2+1)^(1/2))-polylo 
g(2,I*c*x+(-c^2*x^2+1)^(1/2))+polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2)))*c^2*d/ 
(2*c^2*x^2-2))
 
3.1.82.5 Fricas [F]

\[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=\int { \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}}{x^{3}} \,d x } \]

input
integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x^3,x, algorithm="fricas" 
)
 
output
integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arcsin(c*x))*sqrt(-c^2* 
d*x^2 + d)/x^3, x)
 
3.1.82.6 Sympy [F]

\[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=\int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{x^{3}}\, dx \]

input
integrate((-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x))/x**3,x)
 
output
Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x))/x**3, x)
 
3.1.82.7 Maxima [F]

\[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=\int { \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}}{x^{3}} \,d x } \]

input
integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x^3,x, algorithm="maxima" 
)
 
output
-b*sqrt(d)*integrate((c^2*d*x^2 - d)*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2( 
c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))/x^3, x) + 1/2*(3*c^2*d^(3/2)*log(2*sqrt 
(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x)) - (-c^2*d*x^2 + d)^(3/2)*c^2 
 - 3*sqrt(-c^2*d*x^2 + d)*c^2*d - (-c^2*d*x^2 + d)^(5/2)/(d*x^2))*a
 
3.1.82.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=\text {Exception raised: TypeError} \]

input
integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x^3,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.1.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))}{x^3} \, dx=\int \frac {\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{x^3} \,d x \]

input
int(((a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2))/x^3,x)
 
output
int(((a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2))/x^3, x)